
Digital Object Identifier (DOI) 10.1140/epjc/s2003-01143-3
Eur. Phys. J. C 28, 115–118 (2003) THE EUROPEAN

PHYSICAL JOURNAL C

Asymptotic conditions for the electromagnetic form factors
of hadrons represented by the VMD model
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Abstract. A system of linear homogeneous algebraic equations for the coupling constant ratios of vector
mesons to hadrons is derived by imposing the assumed asymptotic behavior upon the VMD pole parame-
terization of an hadron electromagnetic form factor. A similar system of equations with a simpler structure
of the coefficients, taken as even powers of the vector-meson masses, is derived by means of integral super-
convergent sum rules for the imaginary part of the considered form factor using its appropriate δ-function
approximation. Although both systems have been derived starting from different properties of the electro-
magnetic form factor and they each have their own appearances, it is shown explicitly that they are fully
equivalent.

1 Introduction

Hadrons are complex systems with many internal degrees
of freedom and their constituents are quarks and gluons
interacting by the laws of QCD. As a result hadrons have a
finite size, which in EM interactions is revealed as the EM
structure of the hadrons, phenomenologically to be de-
scribed by functions of one variable (the four-momentum
transfer squared t of a virtual photon), called the EM
form factors (FFs). The most simple and frequently used
framework to parameterize the EM FFs is the zero-width
vector-meson dominance (VMD) model [1,2] based on the
effective Lagrangian of the quantum field theory, in which
one assumes that the virtual photon (after having become
a quark–antiquark pair) couples to the hadron as a sta-
ble vector meson. The EM FFs can then be expressed
in terms of the vector-meson masses mv, the coupling
strengths between the virtual photon and the vector me-
son gγ∗v = (em2

v)/fv and between the vector meson and
the considered hadron fvhh and finally summing over all
possible n vector mesons:

Fh(t) =
n∑

v=1

m2
v

m2
v − t

(fvhh/fv). (1)

The FF in this form is a pure real function in the whole
physical region −∞ < t < +∞ with the poles on the posi-
tive real axis. It does not actually have analytic properties
and it does not obey the unitarity condition.

In fact the VMD model is unable to reproduce the ex-
isting experimental information on the EM FFs of hadrons

properly, especially in the time-like region, where var-
ious vector-meson resonances are created in the e+e−-
annihilation processes into hadrons and only its unita-
rization, i.e., the inclusion of the continua contributions
and the instability of vector-meson resonances, leads to
a simultaneous description of the space-like and time-like
data.

A further shortcoming of the VMD models is that they
do not predict a correct behavior of the EM FFs at high
|t| values. The quark–dimensional scaling framework [3,
4] predicts that only the number of valence quarks nq of
the hadron determines the asymptotic behavior of the EM
FFs:

Fh(t)|t|→∞ ∼ t1−nq , (2)

and so it is determined just by the number of gluon prop-
agators.

From (2) one can see immediately that for hadrons
with nq > 2 the asymptotic behavior of their EM FFs
is different from the asymptotic behaviors of (1) and in
the construction of the unitary and analytic models [5–8]
of the EM structure of such hadrons, in which the VMD
model is a starting point, it has to be properly adopted.

Nevertheless, starting from different properties of the
EM FF of the hadron one can derive two apparently dis-
tinct systems of asymptotic conditions for the EM FF of
a hadron represented by the VMD model. The first one is
derived in the absolutely correct way by transforming the
VMD pole representation (1) into a common denomina-
tor and putting the necessary number of coefficients from
the highest powers of t in the numerator to zero. Such
a system of linear homogeneous algebraic equations for
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the coupling constant ratios has, however, coefficients be-
ing rather complicated sums of products of vector-meson
masses squared and one is not be able to find its solu-
tions in the general case. The second system is obtained
from integral superconvergent sum rules for the imaginary
part of the EM FF of a hadron, derived on the basis of
the true analytic properties of the EM FF of the hadron
under consideration; these have nothing in common with
the VMD pole parameterization of the considered EM FF
and in our opinion the whole problem is not well founded.
The advantage is that the obtained system of linear ho-
mogeneous algebraic equations for the coupling constant
ratios has coefficients that are simply even powers of the
corresponding vector-meson masses and in principle one
can find its solutions even in the general case.

The dilemma described above is solved in this paper
by proving generally that both systems of asymptotic con-
ditions are fully equivalent.

This paper is organized as follows. In the next section
we derive two systems of (m − 1) linear homogeneous al-
gebraic equations starting from different properties of the
electromagnetic FF of the hadron. To an explicit proof of
their equivalence is devoted Sect. 3. In the last section we
present our conclusions and a discussion.

2 Algebraic equations
for the coupling constant ratios

Generally, let us assume that the FF in (1) is saturated by
n different vector-meson pole terms and that the asymp-
totic behavior

Fh|t|→∞ ∼ t−m, (3)

is required, where m ≤ n.
Then transforming the VMD pole representation (1)

into a common denominator, one obtains the FF in the
form of a rational function with a polynomial of degree
(n−1) in the numerator, and putting in the latter the first
(m−1) coefficients from the highest powers of t to zero, one
obtains the first system of linear homogeneous algebraic
equations for the coupling constant ratios aj = (fjhh/fj):

n∑
j=1

m2
jaj = 0,

n∑
i=1
i�=j

m2
i

n∑
j=1

m2
jaj = 0, (4)

n∑
i1,i2=1

i1<i2,ir �=j

m2
i1m

2
i2

n∑
j=1

m2
jaj = 0,

n∑
i1,i2,i3=1

i1<i2<i3,ir �=j

m2
i1m

2
i2m

2
i3

n∑
j=1

m2
jaj = 0,

. . . . . . . . .
n∑

i1,i2,···im−2=1
i1<i2···<im−2,ir �=j

m2
i1m

2
i2 · · ·m2

im−2

n∑
j=1

m2
jaj = 0.

Here with increased m the coefficients become sums of
more and more complicated products of squared vector-
meson masses.

For a derivation of the second system we employ the
assumed analytic properties of the EM FFs of the hadrons,
consisting of an infinite number of branch points on the
positive real axis, i.e. cuts, where the first one extends
starting from the lowest branch point t0 to +∞. Then ap-
plying the Cauchy theorem to Fh(t), tFh(t), t2Fh(t), · · ·,
tm−2Fh(t) with the closed integration path consisting of
the circle CR of the radius R → ∞ and the path avoid-
ing the cuts on the positive real axis, one gets (m − 1)
superconvergent sum rules:

1
π

∫ ∞

t0

ImFh(t)dt = 0,

1
π

∫ ∞

t0

t · ImFh(t)dt = 0, (5)

1
π

∫ ∞

t0

t2 · ImFh(t)dt = 0,

. . . . . . . . .
1
π

∫ ∞

t0

tm−2 · ImFh(t)dt = 0.

Now, approximating the FF’s imaginary part by a δ-
function in the form as follows:

ImF (t) = π
n∑
i

aiδ(t − m2
i )m

2
i (6)

and substituting it into (5), one obtains the second system
of (m− 1) linear homogeneous algebraic equations for the
coupling constant ratios ai = (fihh/fi)

n∑
i=1

m2
i ai = 0,

n∑
i=1

m4
i ai = 0,

n∑
i=1

m6
i ai = 0, (7)

. . . . . . . . .
n∑

i=1

m
2(m−2)
i ai = 0,

n∑
i=1

m
2(m−1)
i ai = 0,

however, with coefficients that are simply even powers of
the vector-meson masses.

In the next section we demonstrate explicitly that both
systems of algebraic equations, (4) and (7), are equivalent.

3 Equivalence of systems of algebraic
equations for the coupling constants ratios

In this section we show step by step that the systems of
linear algebraic equations (7) and (4), despite the fact that
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they have been derived starting from different properties
of the EM FF and thus that they appear to be different,
are equivalent. As a consequence, in constructing a unitary
and analytic model of the EM structure of any hadron
composed of more than two quarks one can employ instead
of (4) the simpler set given by (7).

We start with (4). From a direct comparison of the
systems (4) and (7) one can see immediately the identity
of the first equations.

The second equation in (4), by adding and subtracting
the sum

∑n
j=1 m4

jaj , can be modified into the form

n∑
i=1

m2
i

n∑
j=1

m2
jaj −

n∑
j=1

m4
jaj = 0, (8)

from which one can see immediately that the second equa-
tion in (7) is fulfilled, as

∑n
j=1 m2

jaj = 0 is just the first
equation in (4) and (7) as well.

The third equation in (4), by adding and subtract-
ing the term

∑n
i=1,i �=j m2

i

∑n
j=1 m4

jaj and then subtract-
ing and adding the sum

∑n
j=1 m6

jaj , can be rewritten into
the form

n∑
i1,i2=1
i1<i2

m2
i1m

2
i2

n∑
j=1

m2
jaj −

n∑
i=1

m2
i

n∑
j=1

m4
jaj +

n∑
j=1

m6
jaj

= 0, (9)

from which, taking into account the first two equations in
(7), the third equation of (7) follows.

The fourth equation in (4), adding and subtracting
the term

∑n
i1,i2=1

i1<i2,ir �=j
m2

i1
m2

i2

∑n
j=1 m4

ja
′
j , then subtracting

and adding the term
∑n

i=1,i �=j m2
i

∑n
j=1 m6

jaj and finally,
adding and subtracting the sum

∑n
j=1 m8

jaj , can be trans-
formed into the definitive form

n∑
i1,i2,i3=1
i1<i2<i3

m2
i1m

2
i2m

2
i3

n∑
j=1

m2
jaj

−
n∑

i1,i2=1
i1<i2

m2
i1m

2
i2

n∑
j=1

m4
jaj +

n∑
i=1

m2
i

n∑
j=1

m6
jaj −

n∑
j=1

m8
jaj

= 0, (10)

from which, taking into account the first three equations
in (7), the fourth equation in (7) follows.

It is now easy to give a straightforward generalization
of the above procedures.
(1) The qth equation in (4) can be decomposed into q-
terms (see (8), (9) and (10)) consisting of the product
of two parts, where the first part is just the sum of de-
creasing numbers of products of different vector-meson
masses squared, starting from (q−1) coefficients and end-
ing with the constant 1. The second term takes the form∑n

j=1 mα
j aj with an increasing even power α starting from

α = 2 up to 2q.
(2) There is alternating sign in front of every term in that
decomposition, while the first term is always positive.

Now, in order to carry out a general proof of the equiv-
alence of the two systems of algebraic equations under
consideration, let us assume the equivalence of (m − 2)
equations in (4) and (7). Then, taking into account the
generalization of our procedure defined by rules (i) and
(ii) above, one can decompose the (m − 1)th equation in
(4) into the following form:

n∑
i1,i2,i3,···,im−2=1

i1<i2<i3<···<im−2

m2
i1m

2
i2 · · ·m2

im−2

n∑
j

m2
jaj

−
n∑

i1,i2,i3,···,im−3=1
i1<i2<i3<···<im−3

m2
i1m

2
i2 · · ·m2

im−3

n∑
j=1

m4
jaj

+
n∑

i1,i2,i3,···,im−4=1
i1<i2<i3<···<im−4

m2
i1m

2
i2 · · ·m2

im−4

n∑
j

m6
jaj + · · ·

+ (−1)m−3
n∑

i=1

m2
i

n∑
j=1

m
2(m−2)
j aj

+ (−1)m−2
n∑

j=1

m
2(m−1)
j aj = 0, (11)

from which one can see immediately that the (m − 1)th
equation in (7) is satisfied as

∑n
j=1 m2

jaj = 0,
∑n

j=1 m4
jaj

= 0, · · ·, ∑n
j=1 m

2(m−2)
j aj = 0 are just the first (m − 2)

equations in (7) assumed to be valid.
Finally, we would like to draw attention to the proof of

the equivalence of the systems of algebraic equations (4)
and (7) from another point of view.

If the sums
∑n

j=1 m2
jaj ,

∑n
j=1 m4

jaj ,
∑n

j=1 m6
jaj , · · ·,∑n

j=1 m
2(m−3)
j aj ,

∑n
j=1 m

2(m−2)
j aj ,

∑n
j=1 m

2(m−1)
j aj are

considered to be independent variables, then the first
equation in (4) together with the modified forms (8), (9),
(10), · · ·, (11) form a system of (m − 1) homogeneous al-
gebraic equations for these variables and (7) are just its
trivial solutions.

4 Conclusions and discussion

Starting from different properties of the EM FF of the
hadron we have derived two apparently distinct systems
of linear homogeneous algebraic equations for the coupling
constant ratios of vector mesons to the hadron under con-
sideration.

For a derivation of the first system of equations we
have assumed that the EM FF of the hadron is well ap-
proximated by a finite number of vector-meson exchange
tree Feynman diagrams leading to the VMD pole param-
eterization of the FF. The subsequent requirement of true
asymptotics of the EM FF gives the system of linear ho-
mogeneous algebraic equations for the coupling constant
ratios with coefficients that are rather complicated sums
of products of squared vector-meson masses.

For a derivation of the second system of equations an-
alytic properties together with the asymptotic behavior
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of the EM FF have been utilized. The application of the
Cauchy theorem to Fh(t), tFh(t), t2Fh(t), · · ·, tm−2Fh(t)
leads to (m − 1) integral superconvergent sum rules for
ImFh(t), tImFh(t), t2ImFh(t), · · ·, tm−2ImFh(t). Then an
appropriate approximation of the imaginary part of the
FF by a δ-function gives another system of linear homo-
geneous algebraic equations for the coupling constant ra-
tios with coefficients that are simply even powers of the
vector-meson masses.

By using a sequence of algebraic manipulations it has
been proved step by step that both systems of equations
for the coupling constant ratios are equivalent.

Finally, the natural question arises of the practical ap-
plication of such systems of equations for the coupling
constant ratios. The latter was already indicated to some
extent in the introduction, but in relation to this issue
some peculiarities have to be mentioned. The asymptotic
behavior of the EM FF is given by the number nq of con-
stituent quarks in the hadron and so, the system of alge-
braic equations for coupling constant ratios can be derived
only in the case if nq > 2. However, a necessary condition
for the latter is saturation of the sum in (1) by the number
of vector-meson resonances n being greater than or equal
to nq − 1 [9].

If n > nq − 1, then the derived system of equations
leads in the construction of a unitary and analytic model
of the EM structure of the hadron to a remarkable reduc-
tion of the number of free coupling constant ratios.

If n = nq − 1, then adding to (n − 1) algebraic equa-
tions the equation following from a normalization of Fh(t)
at t = 0 that typically has a non-zero value, one obtains
an inhomogeneous system of n linear algebraic equations
with n variables that can be non-trivially solved for. Then
solutions are just the numerical values of the coupling con-
stant ratios which appear to be in very good approxima-
tion to physical reality (for the case of nucleons see [10]).

The inhomogeneous system of n ≥ nq − 1 linear alge-
braic equations is a very natural tool for a successful simul-
taneous incorporation of the normalization and the true
asymptotics of Fh(t) for the unitary and analytic model
of the EM structure of any hadron with nq > 2.
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6. S. Dubnička, A.Z. Dubničkova, J. Kraskiewicz, R. Razcka,

Z. Phys. C 60, 153 (1995)
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